Programming in the Model:
Contextualizing Computer Programming in CAD Models

Maryam M. Maleki, Robert F. Woodbury
School of Interactive Arts and Technology,
Simon Fraser University, Surrey, BC, Canada
(mmaleki,robw)@sfu.ca

Keywords: End-user programming, scripting, visual pro-
gramming, direct manipulation

Abstract

Programming in the model locates programming elements
and tasks contiguous with computer aided design (CAD)
models. It aims to reduce the separation between acts of pro-
gramming, modeling and design, using both spatial coinci-
dence to reduce task shifting and common CAD techniques
to simplify the expression of code. Using techniques from vi-
sual programming, parametric modeling and CAD selection
we demonstrate how programming in the model can express
the core steps in a very simple simulation algorithm.

1. INTRODUCTION

Designers use programming in computer aided design
(CAD) for several reasons including exploring unconven-
tional designs, reducing repetitive work and enabling change
within the design process [Aish, 2003; Woodbury, 2010]. In
recent years, such programming has become a normal part
of design in innovative firms worldwide. Almost all CAD
systems now provide extensive programming interfaces and
such organizations as Smart Geometry conduct regular work-
shops and conferences that focus on programming within the
design process. These designers are end-user programmers:
they have little formal programming education and program
as part of their job, that is to complete tasks [Woodbury,
2010]. Therefore they experience the same issues that other
end-user programmers face in domains such as accounting
in spreadsheets and analysis in structural engineering. One
of these issues is the separation between programming and
the task (design, analysis, etc.). In CAD, designers have to
switch between the programming environment and the model
view several times to make even the most simple modifica-
tions and evaluate their effects on the model, which results in
a loss of focus and efficiency.

The literature emphasizes the importance of a close fit
between the programming world and the domain to reduce
novice and end-user programmers’ cognitive load [Green and
Petre, 1996; Pane and Myers, 1996], as well as to min-
imize or simplify the use of syntax and code to reduce
non-programmers’ difficulties in writing code [Kelleher and
Pausch, 2005]. Direct manipulation of objects in the inter-

face is a way of reducing the distance between what users
think and what the system does and giving users a greater
sense of engagement [Shneiderman, 1983; Hutchins et al.,
1985]. Visual programming represents the program with vi-
sual elements and allows direct manipulation of the program
in graphical form (e.g. Rhino’s Grasshopper). However, the
program is still separate from the model and in order to ob-
serve the result of any manipulation of the visual program,
users need to go back and forth between the model and the
visual programming environment.

2. PROGRAMMING IN THE MODEL

In this ongoing project, we propose programming in the
model as a technique that uses designers’ spatial and visual
capabilities and their familiarity with the 2D/3D model and
contextualizes programming concepts and subtasks directly
in the model. In this approach to programming in CAD, ob-
ject properties as well as dependencies between objects are
represented in the model and can be accessed, modified and
assigned by direct interaction in the model view. In addition,
programming constructs such as functions and loops are cre-
ated and modified in the model directly where they are needed
and linked to the objects in the model to get their inputs
[Maleki and Woodbury, 2010]. In this approach, we use both
direct manipulation and visual programming. Contrary to vi-
sual programming where the program is represented visually
in an independent window in the interface, programming in
the model embeds the visual program in the 2D/3D model
to reduce the need for designers to move their attention back
and forth between multiple windows. Further, debugging is
too often at yet another level removed from the design task.
Effective programming in the model must include both pro-
gramming and debugging.

The domain in which we work always presents a collection
of objects as its model. Objects in the model are essentially
global variables, even if namespaces are used. Programs tend
to operate over a subset of the model. This makes practical
a strategy of spatial localization of code near the subset so
considered. We consider programs that (1) create, (2) change,
and/or (3) report object properties (have side-effects). We aim
for those constructs comprising a general programming lan-
guage, i.e., constants, variables, expressions, statements (in-

cluding control statements) and functions, as well as needed
debugging facilities.

The product of programming in the model is a textual pro-
gram, readable by machine and both readable and editable by
people. The reason for this is that we envision programming
in the model as only one of the productive modes of program-
ming work. Program visualization and text provide comple-
mentary views and insights into code. Over fifty years of work
on textual programming should not be ignored. Programming
in the model complements, rather than replaces textual pro-
gramming.

Textual programs are abstractions from the concrete do-
main over which they compute. In contrast, programming in
the model is domain-proximate: it locates and demonstrates
code working on specific objects, in this case within the
CAD domain. A goal, therefore, is that programming in the
model should provide a way for novice CAD programmers
to progress from operations over specific objects to general
functions that apply to a class.

As designers develop skill and as programs grow in size
and complexity, there are tasks that will be more amenable to
writing textual programs than to direct manipulation. Also,
typical CAD systems provide multiple programming envi-
ronments, each of greater capability and ending in a full de-
velopment environment. Making textual programs available
and editable at every level in a system can aid the process of
laddering to more complex programming tasks and environ-
ments.

The current generation of new CAD systems are almost
all parametric—they provide for the representation and main-
tenance of geometric and other data relationships within a
model. In such systems programming both takes on a new
role and become an inextricable aspect of work. No system
can support the myriad of relationships that a designer might
envision, so user-extension of these relationships is the norm.
The current solution, provided by all systems, is program-
ming. In a parametric system, writing small programs, dis-
tributed throughout a model is a normal aspect of the model-
ing process.

Following is a summary of some features of programming
in the model. This is a work in progress; we present only a
subset of the eventual features.

e Making lists: A designer makes lists of objects in the
model using the list making feature and receives imme-
diate visual feedback on the list in the model. The lists
created by this method have the correct syntax based on
system’s programming language. The designer can mod-
ify the lists in the model by clicking on objects to be
added to, removed from, or reordered within the list.

e Predefined operations and their inline customization:
These are the operations that are applied to lists and indi-

vidual objects. The system resolves indexing depending
on the type of the operation and its operands.

e Implied indexing: The customization of the operations in
aregular CAD system requires using the loops to access
individual items of the lists. Programming in the model
removes the loop by allowing implied indexing of the
lists.

e Object properties and relationships: In parametric mod-
eling, objects use other objects as inputs. These creates
a network of dependencies among them. Some systems
show these relationships independently from the model
in a symbolic representation. Programming in the model
also presents relationships in the model where the ob-
jects are. In addition, object properties are accessible in
the model in short or extended modes and are editable.

We explain a sample of these features in the next section.

3. SIMULATION WITH PROGRAMMING
IN THE MODEL

In this section, we demonstrate programming in the model
through a very simple simulation system. Simulation is sel-
dom provided in conventional CAD interfaces, yet designers
often need to understand the effect of an environmental force
over time or aim at design involving concepts of adaptation,
in which parts of a design “respond” to other parts. For such
goals, simulation is an almost-necessary tool.

Beginning with the basic operations of vector addition,
scaling and point subtraction (which themselves could be fur-
ther decomposed into addition, subtraction and multiplication
over real numbers), we develop all the logic needed for a sim-
ulation step. Our intention in providing an example that is
both simple and complete is to show that programming in the
model is a general concept, rather than a limited convention.

The model in the simulation example is a set of points
called force points and a single point called the target point.
The force points and the target point define a set of vectors.
The simulation (explained at the end of this section) uses re-
laxation to move the target points so that the sum of these vec-
tors is zero. We use a convention of variable replication [Aish
and Woodbury, 2005] in which a variable of a particular type
can carry either a collection or an individual object. While it
would be usual in mathematical notation to distinguish be-
tween collections (using, for instance, uppercase letters) and
objects (diacritics and/or lowercase letters), in the following
we use single uppercase letters for all variables (P,Q,R,S),
characters followed by a single number to distinguish objects
destined for a collection (P1,04,R3,52) and use the prime
diacritic (P',Q',R’,S") to distinguish objects clearly derived
from earlier versions.

In this example, as in most parametric modeling tasks, we
need to make lists of objects to use as inputs for functions

or other objects. In programming in the model, we provide
tools for users to make and use lists in the model and pro-
vide visual feedback in the model for each list. In addition,
list objects take care of the specific syntax of the lists for the
user (commas, brackets, etc.). Figure 1 shows a list of three
vectors that is made by moving the list object in the model
and clicking on the vectors to add them to the list. This list
object then will be used as input to the operations performed
on these vectors.

@ _~ \'--a

(a)

ov \—

(b)

/ Q{vwz}
—_—

()

/ \ g A

(@

Figure 1. Making a list of three vectors.

There is a set of predefined operations for each type of ob-
ject in programming in the model. For vectors the operations
are vector addition and negation (which yield vector subtrac-
tion), point-vector addition, point subtraction, and scaling.
Using replication [Aish and Woodbury, 2005], each of these
operations applies to lists as well as individual objects. In Fig-
ure 2 an addition operation is applied to the list of vectors by
bringing the corresponding node to the model and linking the
list to it. The result of this operation is a vector that is the sum
of the three input vectors.

Let V be a list of vectors, and V' be a new vector, then
V' = +V means

for (int i = O0;
{

Vi =V + V[i]
}

i < V.count; i++)

a2 owoN -

/ \ —_—
.{m,\fzus}

(a) Inputs.

1\

(b) Outputs.

Figure 2. Using addition operation on the vectors in a list.

Figure 3 shows the addition of a list of vectors to a list
of points by making a list of points and a list of vectors and
linking them to the addition node. The output of his node is a
list of points that are the results of adding each vector to each
point in the same order they appear in the lists.

/ \ —
.{\h,vzvs}

.
%{PLD;DS}
Py .

(a) Inputs.

—\

(b) Outputs.

Figure 3. Adding a list of vectors to a list of points using the
addition operation.

Let V be a list of vectors, P be a list of points, and P’ be a
new list of points, then P’ = P+ V means

i for (int i = 0; i < min (P.count, V.
count); i++)

2 {

s P[i] =P[i] + V[i]

+ }

However, the user may want to add the vectors to the points
in a different order. In most CAD systems, using a loop is the
only way of doing such thing. Here, we eliminate the loop
with implied indexing by allowing the user to define the order
in a single line added to the addition operation using indexing.
By doing that we relieve the user from having to deal with
the syntax of a loop, as well as list counts and out of bound
indices. The system forms and tests the needed conditional
statements. Figure 4 shows a customized addition operation
in which each member of the vector list with index i is added
to the member of the point list with index i + 1. The user can
customize the operation by opening a text box and typing the
desired operation.

Let V be a list of vectors, P be a list of points, and P’ be a
new list of points, then P'[i] = P[i+ 1] + V[i] means

for (int i = 0;

{

if((i+1) < P.count)

i < V.count; i++)

PLi] = P[i+1] + V[i]

R B S T

_—\

]
°
o
Figure 4. Addition operation is customized so that every
V[i] is added to P[i +1].

This method of accessing list items without using a loop
can be very helpful in simplifying a collection of loops and
conditionals into a single line of code. Here is another exam-
ple of its use.

Let L and K be lists of real numbers. Then L[i] = K[i —
1]+ K[i] + K[i + 1] is an inline operation in programming in
the model that gives the user access to members in the K list
by only typing a single line of code. However, in traditional
programming languages, the following loop is required for
such an operation.

for (int i = 1; i < K.count—1; i++)

L[i—1] = K[i-1] + K[i] + K[i+1]

B oW oo =

Notice that the loop starts from i = 1 instead of i = 0 and
ends at i < K.count — 1 instead of i < K.count. Consequently,
the sum of three members of K is assigned to L[i — 1] in order
to start the list L from the 0" member. All of these irregu-
larities are sources of hard mental operations, confusion, and
error for designers [Green and Petre, 1996].

Now we use these primitive operations to create the relax-
ation algorithm. A relaxer node is a composite node built of
the above operations that applies the scaled sum of force vec-
tors to the target point. The output of this node is a single
point. First we make a list of the force points by using a list
object. This list F, the target point P, and a scale factor § are
inputs for the relaxer (Figure 5). As displayed in Figure 6, the
first operation in the relaxer node is subtraction of the target
node from each of the force points to make a list of vectors V.
Then we add these vectors together to make a sum vector V'.
We scale V' by multiplying it by S. At the end, we add this
scaled vector to the target point to get the result point.

Let F be a list of force points, P be a target point, and V be
a new list of vectors, then V = F — P means

1 for (int i = 0; i < F.count; i++)
2 {

3 V[i] = F[i] - P
+ }

Let S be a scale factor and V'’ and V" be new vectors, then
V' =4V and V' = S+ V' mean

V=0

> for (int i = 0; i < V.count; i++)
s {

4 Vo=V + V[i]

s }

6V// =S * V/

Let P’ be a new point, then P’ = P+ V", which is the addi-
tion of a vector to a point, creates the result point. Details of
some of these operations are shown in Figure 7.

f\{m,nzpa;(

(a) Inputs.

(b) Output.

Figure 5. Feeding a list of force points and a target point to
the relaxer node results in a new point made by addition of
the scaled sum of the vectors to the target point.

Figure 6. Inside a relaxer node.

The simulator is a node that is independent from the prop-
agation graph and runs only once (Figure 8). The simulator
takes the target point and the result point, moves the target
point to the location of the result point to get the model closer
to the final, balanced state. It then updates the graph. By doing
that the relaxer algorithm is run and the result point moves to
anew location based on the new state of the model. The inter-
nal loop in the simulator repeats these actions until the target

point is coincident (within a tolerance) to the result point and
the model is “balanced.”

VIX=F1.X-PX
V1=F1-P {V‘LY‘ F1.Y-PY
V1Z=F1Z-PZ
V2X=F2X-PX
V=F-P{ V2=F2-P {VZY—FZ.YP‘Y
V2Z=F2Z-PZ
V3X=F3X-PX
V3=F3-P {V&Y =F3Y-PY
V3.Z=F3Z-PZ

(a) Subtraction of the target point (P) from the

list of force points (F) results in a list of vec-
tors (V).

V.Y =V1Y + V2Y + V3Y

V. X=VIX+V2X +V3.X
V=+V
VZ=V1Z+V2Z+V3Z

(b) Applying an addition operation on
a list of vectors (V) results in a sum
vector (V').

Figure 7. Details of subtraction and addition operations in
the relaxer.

4. DISCUSSION

The simulation example above raises issues and questions
that need to be addressed and provides an opportunity for fu-
ture research.

An important aspect of programming in the model, inher-
ited from the direct manipulation approach, is immediate vi-
sual feedback to user actions. This is important for the list
making feature where the designer can benefit from having
the list visually represented in the model by proper brush-
ing and filtering methods. Modifying a list must immediately
change its visual representation in the model. This brings up
a challenge when the objects in the list are not simple points.
Regular brushing techniques may not work for more complex
objects such as surfaces and solids.

Representing programming elements in the model view
can cause a cluttering problem, as shown in Figure 3, or may
obscure the model all together. Transparency, layering, and
on demand filtering can be useful but need to be tested in the
context of design tasks.

Although inline indexing can eliminate the use of loops
in simple customizations, it does not support every situation.
For example, accessing the odd indices of a list requires every
index to be checked against a condition. For situations where
inline indexing is not enough and the use of a loop is required,
how can we simplify the syntax and visualize it in the model
for designers?

(@ (b)

(c) (@

(g) Final state of the model.

Figure 8. The simulator node takes the original target point
and puts it in the location of the result point made by the
relaxer node. This operation is repeated until the model is
relaxed and the target point is in a balanced position.

The example of the relaxer node shows that a combina-
tion of a number of operations should be generalizable and
abstracted into a node, so that with proper input, the desired

output is achieved. This will lead to developing a method for
representing functions and modules in programming in the
model.

And more important of all, what do designers think about
this? Does programming in the model help them program dur-
ing the design task? Does it present too much interference? Is
it easy to learn? Does it provide the means for learning the
textual language? These questions remind us of the impor-
tance of user studies and user feedback sessions along the
way.

S. CONCLUSIONS

This simple simulation example demonstrates two goals of
programming in the model: simplifying the code, and bring-
ing programming closer to the design.

Operations on some or all members of a list use loops (for,
for each, and while loops) to access desired members. In pro-
gramming in the model, we eliminate these loops by allowing
direct access to members of a list through implied indexing
as shown in Figure 4. The system takes care of the task of
keeping the indices in bound that eliminates the use of condi-
tionals (if statements) to check those indices. In doing so, we
simplify the code for designers.

We hypothesize that representing object properties and re-
lationships (visual programming) in the model and providing
operations and inline customizations of those operations in
the model (direct manipulation) may decrease the back and
forth switching between design and programming environ-
ments, which in turn may allow the designers to focus their
attention on the design task.

At the end, we need to emphasize that programming in the
model is not intended to replace textual programming. Rather,
the two work side by side and complement one another. Users
can choose the form of programming based on their task and
their programming experience and preferences.

This is a work in progress. We are currently working on
other programming constructs such as functions and loops
(when implied indexing is not enough) and how to present
them to designers in the context of the model; as well as de-
bugging. We are making working prototypes for future user
testing of programming in the model, the results of which will
be presented as they become available.

ACKNOWLEDGMENTS

This research is partially supported by the Canadian
NSERC Discovery Grants program; Bentley Systems, Inc.;
the NSERC Collaborative Research and Development pro-
gram; and the MITACS Accelerate Canada program. This
support is gratefully acknowledged.

REFERENCES

Aish, R. (2003). Extensible computational design tools for
exploratory architecture. In Architecture in the digital age:
design and manufacturing, pages 244-252. Spon Press,
New York, NY.

Aish, R. and Woodbury, R. (2005). Multi-level interaction in
parametric design. In Lecture Notes in Computer Science:
Smart Graphics, pages 151-162. Springer Berlin / Heidel-
berg.

Green, T. R. G. and Petre, M. (1996). Usability analysis of
visual programming environments: A ‘Cognitive dimen-
sions’ framework. Journal of Visual Languages & Com-
puting, 7(2):131-174.

Hutchins, E. L., Hollan, J. D., and Norman, D. A. (1985).
Direct manipulation interfaces. Human-Computer Interac-
tion, 1(4):311.

Kelleher, C. and Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers. ACM Comput.
Surv., 37(2):83-137.

Maleki, M. M. and Woodbury, R. F. (2010). Programming
in the model: Combining task and tool in computer-aided
design. In New Frontiers, Proceedings of CAADRIA 2010,
Hong Kong. Forthcoming.

Pane, J. F. and Myers, B. A. (1996). Usability issues in the
design of novice programming systems. Technical Report
CMU-CS-96-132, Carnegie Mellon University, School of
Computer Science, Pittsburgh, PA.

Shneiderman, B. (1983). Direct manipulation: A step beyond
programming languages. Computer, 16(8):57-69.

Woodbury, R. F. (2010). Elements of Parametric Design. Tay-
lor and Francis. Forthcoming.

